849 research outputs found

    A DAI approach to modeling the transportation domain

    Get PDF
    A central problem in the study of autonomous cooperating systems is that of how to establish mechanisms for controlling the interactions between different parts (which are called agents) of the system. One way to integrate such mechanisms into a multi-agent system is to exploit the technique of cooperation or negotiation protocols. In a protocol we distinguish to essential layers: the communication layer specifying the possible flow of messages between different agents, and the decision layer, which controls the selection of a message (speech-act) that the agent sends in a specific situation. In this report we first give a short introduction of our agent model InteRRap which provides the basis for the modeling of the different scenarios considered in the AKA-Mod project at the DFKI. The techniques we will discuss in the following are located in the plan based component and in the cooperation component of this model. The domain of application is the MARS scenario (Modeling a Multi-Agent Scenario for Shipping Companies) which implements a group of shipping companies whose goal it is to deliver a set of dynamically given orders, satisfying a set of given time and/or cost constraints. The complexity of the orders may exceed the capacities of a single company. Therefore, cooperation between companies is required in order to achieve the goal in a satisfactory way. This domain is of considerable interest for studies with economical background as well as for research projects. We give a short summary of results from economical studies that are concerned with the real-world situation in Germany in the transportation domain. They show the need for the development of new techniques from the field of computer science to tackle the problems therein. Then, an overview on related research is presented. Two approaches are discussed in more detail: the first one being based on OR-techniques and a second one being based on the concept of partial intelligent agents attempting to integrate techniques from OR and DAI. Both approaches are concerned with the situation in a single company. However, our purpose to handle the case of distributed shipping companies requires additional mechanisms, e.g. to cope with the problems of task allocation and task decomposition in multi-agent systems. Mechanisms for distributed task decomposition and task allocation processes in multi-agent systems belong to the core of our studies. Therefore, we will first discuss techniques for these problems in a general setting and then describe their implementations in the MARS system. In this description, particular emphasis is placed on the cooperation within a shipping company. Here, one company agent has to allocate a set of orders its truck agents. The truck agents support the company agents by giving cost estimations based on their route planning facility. Thus, this procedure provides the basis for the decisions of the company agents and is discussed in very detail. Finally, we present results from a series of benchmark tests. The test sets have also been run with OR-implementations and thus, give us the opportunity to compare our implementation against these approaches

    Characteristic values of the lumbar load of manual patient handling for the application in workers' compensation procedures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human spine is often exposed to mechanical load in vocational activities especially in combination with lifting, carrying and positioning of heavy objects. This also applies in particular to nursing activities with manual patient handling. In the present study a detailed investigation on the load of the lumbar spine during manual patient handling was performed.</p> <p>Methods</p> <p>For a total of 13 presumably endangering activities with transferring a patient, the body movements performed by healthcare workers were recorded and the exerted action forces were determined with regard to magnitude, direction and lateral distribution in the time course with a "measuring bed", a "measuring chair" and a "measuring floor". By the application of biomechanical model calculations the load on the lowest intervertebral disc of the lumbar spine (L5-S1) was determined considering the posture and action force data for every manual patient handling.</p> <p>Results</p> <p>The results of the investigations reveal the occurrence of high lumbar load during manual patient handling activities, especially in those cases, where awkward postures of the healthcare worker are combined with high action forces caused by the patient's mass. These findings were compared to suitable issues of corresponding investigations provided in the literature. Furthermore measurement-based characteristic values of lumbar load were derived for the use in statement procedures concerning the disease no. 2108 of the German list of occupational diseases.</p> <p>Conclusions</p> <p>To protect healthcare workers from mechanical overload and the risk of developing a disc-related disease, prevention measures should be compiled. Such measures could include the application of "back-fairer" nursing techniques and the use of "technical" and" small aids" to reduce the lumbar load during manual patient handling. Further studies, concerning these aspects, are necessary.</p

    Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells

    Get PDF
    Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.German-Israeli Foundation for Scientific Research and Development (GIF grant I-1098-43.11/2010

    Improvement of renal function after transcatheter aortic valve replacement and its impact on survival

    Get PDF
    Background Chronic kidney disease as well as acute kidney injury are associated with adverse outcomes after transcatheter aortic valve replacement (TAVR). However, little is known about the prognostic implications of an improvement in renal function after TAVR. Methods Renal improvement (RI) was defined as a decrease in postprocedural creatinine in μmol/l of ≥1% compared to its preprocedural baseline value. A propensity score representing the likelihood of RI was calculated to define patient groups which were comparable regarding potential confounders (age, sex, BMI, NYHA classification, STS score, log. EuroSCORE, history of atrial fibrillation/atrial flutter, pulmonary disease, previous stroke, CRP, creatinine, hsTNT and NT-proBNP). The cohort was stratified into 5 quintiles according to this propensity score and the survival time after TAVR was compared within each subgroup. Results Patients in quintile 5 (n = 93) had the highest likelihood for RI. They were characterized by higher creatinine, lower eGFR, higher NYHA class, higher NT-proBNP, being mostly female and having shorter overall survival time. Within quintile 5, patients without RI had significantly shorter survival compared to patients with RI (p = 0.002, HR = 0.32, 95% CI = [0.15-0.69]). There was no survival time difference between patients with and without RI in the whole cohort (p = 0.12) and in quintiles 1 to 4 (all p > 0.16). Analyses of specific subgroups showed that among patients with NYHA class IV, those with RI also had a significant survival time benefit (p < 0.001, HR = 0.15; 95%-CI = [0.05-0.44]) compared to patients without RI. Conclusions We here describe a propensity score-derived specific subgroup of patients in which RI after TAVR correlated with a significant survival benefit

    Proteomic analysis of the U1 snRNP of Schizosaccharomyces pombe reveals three essential organism-specific proteins

    Get PDF
    Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30–60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing

    Fibin regulates cardiomyocyte hypertrophy and causes protein-aggregate-associated cardiomyopathy in vivo

    Get PDF
    Despite the identification of numerous molecular pathways modulating cardiac hypertrophy its pathogenesis is not completely understood. In this study we define an unexpected role for Fibin (“fin bud initiation factor homolog”) in cardiomyocyte hypertrophy. Via gene expression profiling in hypertrophic murine hearts after transverse aortic constriction we found a significant induction of Fibin. Moreover, Fibin was upregulated in another mouse model of cardiac hypertrophy (calcineurin-transgenics) as well as in patients with dilated cardiomyopathy. Immunoflourescence microscopy revealed subcellular localization of Fibin at the sarcomeric z-disc. Overexpression of Fibin in neonatal rat ventricular cardiomyocytes revealed a strong anti-hypertrophic effect through inhibiting both, NFAT- and SRF-dependent signalling. In contrast, transgenic mice with cardiac-restricted overexpression of Fibin developed dilated cardiomyopathy, accompanied by induction of hypertrophy-associated genes. Moreover, Fibin overexpression accelerated the progression to heart failure in the presence of prohypertrophic stimuli such as pressure overload and calcineurin overexpression. Histological and ultrastructural analyses surprisingly showed large protein aggregates containing Fibin. On the molecular level, aggregate formation was accompanied by an induction of the unfolded protein response subsequent UPR-mediated apoptosis and autophagy. Taken together, we identified Fibin as a novel potent negative regulator of cardiomyocyte hypertrophy in vitro. Yet, heart-specific Fibin overexpression in vivo causes development of a protein-aggregate-associated cardiomyopathy. Because of close similarities to myofibrillar myopathies, Fibin represents a candidate gene for cardiomyopathy and Fibin transgenic mice may provide additional mechanistic insight into aggregate formation in these diseases
    corecore